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Fisher zeros of the Ising antiferromagnet in an arbitrary nonzero magnetic field
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From the exact partition functions of the Ising modellor L square latticegsup toL=14) in an arbitrary
nonzero external magnetic field, the precise distributions of the Fisher zeros in the complex temperature
(a=€?%) plane are obtained. Our results indicate that in the llmit o the Fisher zeros foH # 0 do cut the
positive real axis at the antiferromagnetic critical paptH); these values are compared with the results of
closed-form approximations for the antiferromagnetic critical line. From the Fisher zeros the thermal scaling
exponenty;=1 is also obtained along the critical line, indicating the logarithmic singularity of the specific heat
for the antiferromagnetic Ising model even in a strong uniform magnetic field.
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[. INTRODUCTION the Fisher zeros foH # 0 diverges at a nonphysical critical
point, the Fisher edge singularifp—7], which appears in-

The Ising model in an external magnetic figttl on a _ - )
stead of the physical FM critical poittH=0). On the other

lattice with Ng sites andN, bonds is defined by the Hamil-

tonian hand, it is generally believed that the physical AF critical
point exists in the compler plane even foH # 0, that is,
H=-32 (gioj+ 1) +HX (1-0), (1)  the Fisher zeros forl # 0 cut the positive real axis at the AF
@ i critical point. However, the existence of the AF critical point

whereJ is the coupling constantj,j) indicates a sum over in the complexa plane has never been shown. In this paper
all nearest-neighbor pairs of lattice sites, ang+1. The  We study the AF critical point of the Ising model fét#0
two-dimensional Ising model is the simplest model showing!Sing the Fisher zeros eva]uated from the exact partition
phase transitions at finite temperatures, and consequently finctions onL X L square lattices up th=14.
has played a central role in our understanding of phase tran-
sitions and critical phenomena. Yang and [[&kproposed a
mechanism for the occurrence of phase transitions in the Il. NUMBER OF STATES
thermodynamic limit and yielded insight into the problem of
the ferromagneti¢FM) Ising model in an arbitrary nonzero If we define the number of statd3(E,M) with a given
thernal magnetic field at arbitrary temp_e_rature by introducenergy E:%2<i‘j>(gigj+1) and a given magnetizatioiv
ropie: magmetfeanecrong s seron 01" " 16=131-g), where E ana M are posie tegers OF
< <

The partition function zeros in theo_mplex temper_ature mg‘ge?fz?g}gﬂ_ﬁﬁ”\'; ST; g\z?t&cjg Ofsggfggp%f égﬁﬁéﬂg
plane (Fisher zerogare also important in understanding the . I
FM and antiferromagneti€AF) phase transitiong2]. Fisher tions, can be written as
conjectured 2] that the Fisher zeros in the complax e?
plane of the square lattice Ising model fid=0 lie on two
circles (the FM circleagy=1+\2€¢'Y and the AF circleasr
=-1+\2€'%. Fisher also showed that the logarithmically in-
finite specific heat singularity of the Ising model foir=0
results from the properties of the Fisher zeros. Later, it was
concluded that for very special boundary conditions the
Fisher zeros of the Ising model fef=0 do indeed lie on two
circles, while for more general boundary conditions the zeros
approach two circles as the size of the lattices increg&es

It is well known that the FM critical point disappears in
the complexa plane forH # 0 [4]. Matveev and Shrocfb]
studied the Fisher zeros of the two-dimensional Ising model
for H# 0 using the high-field, low-temperature series expan-
sion and the partition function on>78 square lattice with

100

helical boundary conditions. They found that the density of M 0
FIG. 1. The entropyS(E,M)=[In Q(E,M)]/196 for the 14
*Electronic address: sykim@kias.re.kr X 14 Ising model with free boundary conditions.
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FIG. 2. Fisher zeros in the complexplane of the 14 14 Ising model with cylindrical boundary conditions for (a) 1, (b) 0.1,(c) 0.01,
and(d) 0.001. In(a) the two circles are the locus of the Fisher zeros<ol in the thermodynamic limit. Ifb), (c), and(d) the plus symbols
show the locations of the Fisher edge singulariiggstimated from the series analysis.

Np Ns model with free boundary conditions. The distribution of the
Z(ax) =Y, > Q(E,M)a>M, (2)  entropy is symmetric abow =98. There are two ARFM)
E=0 M=0 ground states witHE=0 (364) and M=98 (0 or 196. The

largest number of states is

where a=e?#) and x=e 2?1, For AF interactionJ<0 the
physical interval is B<a<1 (0<T<c), while for FMin- (181 98 = 240 973 360 217 665 607 148 486 961 057 273
teractionJ>0 itis 1sasw (x=T=0).

The microcanonical transfer matripp—10 is used to 755484 504 818 452 029 959 168, ©)
evaluate theexactinteger values for the number of states
Q(E,M) of the Ising model onL X L square lattices with which is approximately 2.4097 10°® and corresponds t8
cylindrical and free boundary conditions. Figure 1 shows the=0.662 369. The distributions of entrofE, M) for cylin-
entropy S(E,M)=[In Q(E,M)]/L? for the 14x14 Ising drical boundary conditions are almost identical to those for

TABLE I. The real and imaginary parts of the first zeag(L) at x=0.01 for the AF Ising model with
cylindrical and free boundary conditiong(L) is the scaling exponent calculated by ES).

Cylindrical Free
L Reay(L)] Im[a,(L)] yi(L) Rea;(L)] Im[ay(L)] Yi(L)
6 0.195240 0.0772936 1.036353 0.155101 0.0894437 0.901943
8 0.202102 0.0573671 1.019655 0.174446 0.0690021 0.946469
10 0.205402 0.0456928 1.011293 0.184192 0.0558650 0.959265
12 0.207336 0.0379990 1.006665 0.190076 0.0469012 0.965282
14 0.208602 0.0325371 0.194027 0.0404168
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TABLE II. The critical pointsa.(x) and the thermal scaling exponemi&x), in the limit L — oo, for the AF
Ising model with cylindrical and free boundary conditions, estimated from the Fisher agitgson finite

latticesL=6~ 14 (even sizes only

Cylindrical Free

X ac(x) Yi(X) ac(x) (%)
0.9 0.414088)+0.000017)i 1.00Q8) 0.414@3)+0.000@3)i 1.0032)
0.5 0.405847)+0.000018)i 1.0008) 0.40583)+0.00014)i 1.0069)
0.1 0.3377(2)+0.00012)i 1.0195) 0.33744)+0.00q1)i 0.9938)
0.01 0.214(02)+0.000Q2)i 1.0109) 0.21338)+0.00Q4)i 0.98188)
0.001 0.124(Q1) +0.00016)i 0.9927) 0.1251)+0.0032)i 0.939)
0.0001 0.071@®)+0.000Q3)i 0.991) 0.071@9)+0.0Q2)i 0.971)
0.00001 0.04024) +0.000027)i 0.991) 0.040297)+0.00Q1)i 0.983)

free boundary conditions. The additional discussions on envalues ofa, and a.. The estimated values by Dlog Padé

tropy S(E,M) are given in Ref[10].

Ill. FISHER ZEROS IN A MAGNETIC FIELD

approximants [12] are a,=1.191) (x=0.1), 1.205)
(x=0.01, 1.1912) (x=0.001, 1.1716) (x=0.0002, and
1.1718) (x=0.000 0). They are in good agreement with the

The precise distributions of the Fisher zeros of the Isingvalues forx>0.1, reported if5]. The value ofa, may be

model forx# 1 are obtained from the exact partition func-

independent ok [5-7], and a conjectured value k&g:% [7].

tions on finite lattices. Because the Ising model has the sym- As shown in Fig. 2, some Fisher zeros lie close to the

metry X< 1/x, with no loss of generality, we consider only
Fisher zeros forx<s1 (H=0). Figure 2 shows the Fisher
zeros in the compler plane of the 14 14 Ising model for
cylindrical boundary conditions. The Fisher zeros forl
[Fig. 2(@)] lie close to the FM and AF circles, and cut the
positive real axis at the FM critical poima:1+\s“§) and at
the AF critical point(=1+12) in the limit L— o [3,9]. As x

decreases, the Fisher zeros approach the origin. In the limit

x— 0 (H—o0) the partition function of the Ising model be-
comesZ(a,0)=2Q(E,0)aF=aMr, and all Fisher zeros lie on

positive real axis between 0 and ~{afor H#0. The zero
closest to the positive real axis is called the first zey@d.).
Itzyksonet al.[4] showed that the imaginary part [eq(L)]
of the first zero vanishes in the limit— oo, following the
finite-size scaling gy (L)]~ L™t. From this scaling law we
obtain the thermal scaling exponent

_In{im[ay(L +2)J/Im[ay(L)]}
In[(L +2)/L]

yi(L) = (5)

a=0. More discussions on the Fisher zeros of the squarépr finite lattices. Table | shows the values of the first zero

lattice Ising model in a magnetic field are given in Ré].
For x# 1 [Figs. 2b)-2(d)], the FM critical point disap-
pears but the Fisher edge singularitegsappear. For small

a;(L) and the scaling exponemi(L) of the AF Ising model
for x=0.01. By using the Bulirsch-StodBST) algorithm
[13], we extrapolated our results for finite lattices to infinite

values ofx, the Fisher edge singularities and the zeros nea$ize. Table Il shows the BST estimations wittx 1 (the pa-

them lie close to the lines R&/Im(a)=+1, as shown in

rameter of the BST algorithpof the AF critical pointsa.(x)

Fig. 2(d). Figure 2 also shows accumulation of the Fisher

zeros nean,. The density of zeros neax is given by[5-7]
g(a) ~ (a-a))' ™. (4)

The high-field, low-temperature series expansion for the

square-lattice Ising mod¢l1] has been used to estimate the

TABLE lIl. The results of the Wu-Wu approximatidri4] and
the Wang-Kim approximatiofl5] for the AF critical lineac(x).

X Wu-Wu Wang-Kim
0.9 0.41401 0.41402
0.5 0.40581 0.40578
0.1 0.33768 0.33802
0.01 0.21440 0.21625
0.001 0.12516 0.12677
0.0001 0.07125 0.07215
0.00001 0.04022 0.04068
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FIG. 3. The critical pointsa.(x) for the AF Ising model with
cylindrical (triangles and free(squares boundary conditions, ob-
tained from the Fisher zeros. The solid and dashed lines represent
the results of the Wu-Wu and Wang-Kim approximations, respec-
tively. These approximations are not clearly distinguishable within
the figure.

017102-3



BRIEF REPORTS PHYSICAL REVIEW H1, 017102(2005

and the thermal scaling exponeni$x) for different values The results for the thermal exponegix) (Table Il) imply

of x. The values of_ the imagina_ry parts in Table Il are esti-y,(x)=1 anda=2-d/y,=0 (the critical exponent related to

mated from the Fisher zeros in theomplextemperature the specific heat Because the Fisher zeros in the complex

plane for finite lattices that have the imaginary paifts  temperatureplane cut the positive real axis in the thermody-

example, Table)l The extrapolated results indicate that the hamic limit, =0 means the logarithmic singularity of the

Erlﬁlhczrl E)Ec})?r:tssz);x;)& 1 do cut the positive real axis at the AF specific heat. The logarithmic singularity of the specific heat
) for H#0 has been reported in the study of a two-

We do not know theexactexpression of the critical line, di ional h i« h
as a function of the external magnetic field, of the squaredimensional superexchange antiferromadrié whose ex-

lattice Ising antiferromagnet. Instead, we have the differenfict solution is known, because this simple model is trans-
approximationg 14,15 to the antiferromagnetic critical line formed into the Onsager solution of the square-lattice Ising
in a magnetic field. Table Il shows the results of the Wu-wumodel in theabsenceof a magnetic field. However, it is not
approximation[14] and the Wang-Kim approximatiofl5]  clear whether this kind of behavior results from the special
for the AF critical linea.(x). Usually, the results of Wu-Wu character of the superexchange model, or whether it is a
approximation are closer to those estimated from the Fishegeneral property that is also present in the AF Ising model
zeros. Figure 3 shows the critical poirggx) obtained from  and other AF models. Our results clearly show that the spe-
the Fisher zeros and the results of the closed-form approxiific heat of the AF Ising model retains the logarithmic sin-

mations. gularity even in a strong uniform magnetic field.
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