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From the exact partition functions of the Ising model onL3L square latticessup to L=14d in an arbitrary
nonzero external magnetic fieldH, the precise distributions of the Fisher zeros in the complex temperature
sa=e2bJd plane are obtained. Our results indicate that in the limitL→` the Fisher zeros forHÞ0 do cut the
positive real axis at the antiferromagnetic critical pointacsHd; these values are compared with the results of
closed-form approximations for the antiferromagnetic critical line. From the Fisher zeros the thermal scaling
exponentyt=1 is also obtained along the critical line, indicating the logarithmic singularity of the specific heat
for the antiferromagnetic Ising model even in a strong uniform magnetic field.
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I. INTRODUCTION

The Ising model in an external magnetic fieldH on a
lattice with Ns sites andNb bonds is defined by the Hamil-
tonian

H = − Jo
ki,jl

ssis j + 1d + Ho
i

s1 − sid, s1d

whereJ is the coupling constant,ki , jl indicates a sum over
all nearest-neighbor pairs of lattice sites, andsi = ±1. The
two-dimensional Ising model is the simplest model showing
phase transitions at finite temperatures, and consequently it
has played a central role in our understanding of phase tran-
sitions and critical phenomena. Yang and Leef1g proposed a
mechanism for the occurrence of phase transitions in the
thermodynamic limit and yielded insight into the problem of
the ferromagneticsFMd Ising model in an arbitrary nonzero
external magnetic field at arbitrary temperature by introduc-
ing the concept of the zeros of the partition function in the
complex magnetic-fieldplanesYang-Lee zerosd.

The partition function zeros in thecomplex temperature
planesFisher zerosd are also important in understanding the
FM and antiferromagneticsAFd phase transitionsf2g. Fisher
conjecturedf2g that the Fisher zeros in the complexa=e2bJ

plane of the square lattice Ising model forH=0 lie on two
circles sthe FM circleaFM=1+Î2eiu and the AF circleaAF
=−1+Î2eiud. Fisher also showed that the logarithmically in-
finite specific heat singularity of the Ising model forH=0
results from the properties of the Fisher zeros. Later, it was
concluded that for very special boundary conditions the
Fisher zeros of the Ising model forH=0 do indeed lie on two
circles, while for more general boundary conditions the zeros
approach two circles as the size of the lattices increasesf3g.

It is well known that the FM critical point disappears in
the complexa plane forHÞ0 f4g. Matveev and Shrockf5g
studied the Fisher zeros of the two-dimensional Ising model
for HÞ0 using the high-field, low-temperature series expan-
sion and the partition function on 738 square lattice with
helical boundary conditions. They found that the density of

the Fisher zeros forHÞ0 diverges at a nonphysical critical
point, the Fisher edge singularityf5–7g, which appears in-
stead of the physical FM critical pointsH=0d. On the other
hand, it is generally believed that the physical AF critical
point exists in the complexa plane even forHÞ0, that is,
the Fisher zeros forHÞ0 cut the positive real axis at the AF
critical point. However, the existence of the AF critical point
in the complexa plane has never been shown. In this paper
we study the AF critical point of the Ising model forHÞ0
using the Fisher zeros evaluated from the exact partition
functions onL3L square lattices up toL=14.

II. NUMBER OF STATES

If we define the number of statesVsE,Md with a given
energy E= 1

2oki,jlssis j +1d and a given magnetizationM

= 1
2ois1−sid, where E and M are positive integers 0øE

øNb and 0øM øNs, the partition function of the Ising
modelZ=ohsnje

−bH, a sum over 2Ns possible spin configura-
tions, can be written as
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FIG. 1. The entropySsE,Md=fln VsE,Mdg /196 for the 14

314 Ising model with free boundary conditions.
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Zsa,xd = o
E=0

Nb

o
M=0

Ns

VsE,MdaExM , s2d

where a=e2bJ and x=e−2bH. For AF interactionJ,0 the
physical interval is 0øaø1 s0øTø`d, while for FM in-
teractionJ.0 it is 1øaø` s`ùTù0d.

The microcanonical transfer matrixf6–10g is used to
evaluate theexact integer values for the number of states
VsE,Md of the Ising model onL3L square lattices with
cylindrical and free boundary conditions. Figure 1 shows the
entropy SsE,Md=fln VsE,Mdg /L2 for the 14314 Ising

model with free boundary conditions. The distribution of the
entropy is symmetric aboutM =98. There are two AFsFMd
ground states withE=0 s364d and M =98 s0 or 196d. The
largest number of states is

Vs181,98d = 240 973 360 217 665 607 148 486 961 057 273

755 484 504 818 452 029 959 168, s3d

which is approximately 2.409731056 and corresponds toS
=0.662 369. The distributions of entropySsE,Md for cylin-
drical boundary conditions are almost identical to those for

TABLE I. The real and imaginary parts of the first zeroa1sLd at x=0.01 for the AF Ising model with
cylindrical and free boundary conditions.ytsLd is the scaling exponent calculated by Eq.s5d.

L

Cylindrical Free

Refa1sLdg Imfa1sLdg ytsLd Refa1sLdg Imfa1sLdg ytsLd

6 0.195240 0.0772936 1.036353 0.155101 0.0894437 0.901943

8 0.202102 0.0573671 1.019655 0.174446 0.0690021 0.946469

10 0.205402 0.0456928 1.011293 0.184192 0.0558650 0.959265

12 0.207336 0.0379990 1.006665 0.190076 0.0469012 0.965282

14 0.208602 0.0325371 0.194027 0.0404168

FIG. 2. Fisher zeros in the complexa plane of the 14314 Ising model with cylindrical boundary conditions forx= sad 1, sbd 0.1,scd 0.01,
andsdd 0.001. Insad the two circles are the locus of the Fisher zeros forx=1 in the thermodynamic limit. Insbd, scd, andsdd the plus symbols
show the locations of the Fisher edge singularitiesae estimated from the series analysis.
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free boundary conditions. The additional discussions on en-
tropy SsE,Md are given in Ref.f10g.

III. FISHER ZEROS IN A MAGNETIC FIELD

The precise distributions of the Fisher zeros of the Ising
model for xÞ1 are obtained from the exact partition func-
tions on finite lattices. Because the Ising model has the sym-
metry x↔1/x, with no loss of generality, we consider only
Fisher zeros forxø1 sHù0d. Figure 2 shows the Fisher
zeros in the complexa plane of the 14314 Ising model for
cylindrical boundary conditions. The Fisher zeros forx=1
fFig. 2sadg lie close to the FM and AF circles, and cut the
positive real axis at the FM critical pointsa=1+Î2d and at
the AF critical points−1+Î2d in the limit L→` f3,9g. As x
decreases, the Fisher zeros approach the origin. In the limit
x→0 sH→`d the partition function of the Ising model be-
comesZsa,0d=oEVsE,0daE=aNb, and all Fisher zeros lie on
a=0. More discussions on the Fisher zeros of the square-
lattice Ising model in a magnetic field are given in Ref.f5g.

For xÞ1 fFigs. 2sbd–2sddg, the FM critical point disap-
pears but the Fisher edge singularitiesae appear. For small
values ofx, the Fisher edge singularities and the zeros near
them lie close to the lines Resad / Imsad= ±1, as shown in
Fig. 2sdd. Figure 2 also shows accumulation of the Fisher
zeros nearae. The density of zeros nearae is given byf5–7g

gsad , sa − aed1−ae. s4d

The high-field, low-temperature series expansion for the
square-lattice Ising modelf11g has been used to estimate the

values of ae and ae. The estimated values by Dlog Padé
approximants f12g are ae=1.19s1d sx=0.1d, 1.20s5d
sx=0.01d, 1.19s12d sx=0.001d, 1.17s16d sx=0.0001d, and
1.17s18d sx=0.000 01d. They are in good agreement with the
values forx.0.1, reported inf5g. The value ofae may be
independent ofx f5–7g, and a conjectured value isae= 7

6 f7g.
As shown in Fig. 2, some Fisher zeros lie close to the

positive real axis between 0 and −1+Î2 for HÞ0. The zero
closest to the positive real axis is called the first zeroa1sLd.
Itzyksonet al. f4g showed that the imaginary part Imfa1sLdg
of the first zero vanishes in the limitL→`, following the
finite-size scaling Imfa1sLdg,L−yt. From this scaling law we
obtain the thermal scaling exponent

ytsLd = −
lnhImfa1sL + 2dg/Imfa1sLdgj

lnfsL + 2d/Lg
s5d

for finite lattices. Table I shows the values of the first zero
a1sLd and the scaling exponentytsLd of the AF Ising model
for x=0.01. By using the Bulirsch-StoersBSTd algorithm
f13g, we extrapolated our results for finite lattices to infinite
size. Table II shows the BST estimations withw=1 sthe pa-
rameter of the BST algorithmd of the AF critical pointsacsxd

TABLE II. The critical pointsacsxd and the thermal scaling exponentsytsxd, in the limit L→`, for the AF
Ising model with cylindrical and free boundary conditions, estimated from the Fisher zerosa1sLd on finite
latticesL=6,14 seven sizes onlyd.

x
Cylindrical

acsxd ytsxd
Free
acsxd ytsxd

0.9 0.41403s8d+0.00001s7di 1.000s8d 0.4140s3d+0.0000s3di 1.003s2d
0.5 0.40584s7d+0.00001s8di 1.000s8d 0.4058s3d+0.0001s4di 1.006s9d
0.1 0.33770s2d+0.0001s2di 1.019s5d 0.3374s4d+0.000s1di 0.993s8d
0.01 0.2140s2d+0.0000s2di 1.010s9d 0.2133s8d+0.000s4di 0.9816s8d
0.001 0.1240s1d+0.0001s6di 0.992s7d 0.125s1d+0.003s2di 0.93s9d
0.0001 0.0713s3d+0.0000s3di 0.99s1d 0.0710s9d+0.00s2di 0.97s1d
0.00001 0.0402s24d+0.00002s7di 0.99s1d 0.0402s97d+0.000s1di 0.98s3d

TABLE III. The results of the Wu-Wu approximationf14g and
the Wang-Kim approximationf15g for the AF critical lineacsxd.

x Wu-Wu Wang-Kim

0.9 0.41401 0.41402

0.5 0.40581 0.40578

0.1 0.33768 0.33802

0.01 0.21440 0.21625

0.001 0.12516 0.12677

0.0001 0.07125 0.07215

0.00001 0.04022 0.04068

FIG. 3. The critical pointsacsxd for the AF Ising model with
cylindrical strianglesd and freessquaresd boundary conditions, ob-
tained from the Fisher zeros. The solid and dashed lines represent
the results of the Wu-Wu and Wang-Kim approximations, respec-
tively. These approximations are not clearly distinguishable within
the figure.
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and the thermal scaling exponentsytsxd for different values
of x. The values of the imaginary parts in Table II are esti-
mated from the Fisher zeros in thecomplex temperature
plane for finite lattices that have the imaginary partssfor
example, Table Id. The extrapolated results indicate that the
Fisher zeros forxÞ1 do cut the positive real axis at the AF
critical pointsacsxd.

We do not know theexactexpression of the critical line,
as a function of the external magnetic field, of the square-
lattice Ising antiferromagnet. Instead, we have the different
approximationsf14,15g to the antiferromagnetic critical line
in a magnetic field. Table III shows the results of the Wu-Wu
approximationf14g and the Wang-Kim approximationf15g
for the AF critical lineacsxd. Usually, the results of Wu-Wu
approximation are closer to those estimated from the Fisher
zeros. Figure 3 shows the critical pointsacsxd obtained from
the Fisher zeros and the results of the closed-form approxi-
mations.

The results for the thermal exponentytsxd sTable IId imply
ytsxd=1 anda=2−d/yt=0 sthe critical exponent related to
the specific heatd. Because the Fisher zeros in the complex
temperatureplane cut the positive real axis in the thermody-
namic limit, a=0 means the logarithmic singularity of the
specific heat. The logarithmic singularity of the specific heat
for HÞ0 has been reported in the study of a two-
dimensional superexchange antiferromagnetf16g whose ex-
act solution is known, because this simple model is trans-
formed into the Onsager solution of the square-lattice Ising
model in theabsenceof a magnetic field. However, it is not
clear whether this kind of behavior results from the special
character of the superexchange model, or whether it is a
general property that is also present in the AF Ising model
and other AF models. Our results clearly show that the spe-
cific heat of the AF Ising model retains the logarithmic sin-
gularity even in a strong uniform magnetic field.
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